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Abstract: Genetics and genomics offer avenues to reduce model uncertainty by improving descriptions
of cultivar differences and of individual plant processes. Ultimately, this should greatly enhance
our ability to integrate data on genotypes (G), environment (E) and management (M) in order to
quantitatively predict phenotypes (P), which can be termed the GEM-to-P problem. This paper
reviews use of genetics and genomics with emphasis on wheat (Triticum aestivum), sorghum
(Sorghum vulgare) and common bean (Phaseolus vulgaris). Cultivar specific parameters, such as
for photoperiod sensitivity or grain size, are often problematic because their values are determined
empirically from field studies and because the assumed physiology is inaccurate. Genotypic data
should be more reliable than phenotypic data, since environmental effects are minimized. Using
the Cropping System Model (CSM) for bread wheat, sorghum and common bean, coefficients were
estimated through linear functions of gene effects. For all three crops, simulations using gene-based
coefficients were similar to those from conventional coefficients. The main constraint to wider use
of this approach is the limited number of loci that have been characterized for readily modeled
traits. However, emerging genomic tools allow rapid, robust characterization of genes such as the
Vrn and Ppd series in wheat, and data limitations are diminishing. Genomics can also improve how
processes are modeled. Examples include determining the end of the juvenile phase, characterizing
interactive effects of temperature on photoperiod sensitivity, improving how tiller development is
modeled, and estimating carbon costs of low-lignin traits for bioenergy crops. Realizing the
potential of crop genetics and genomics, however, will not happen spontaneously. Modelers must
broaden their understanding of genomics and related fields, while developing effective
collaborations with the plant biology community.
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1 Introduction

Process-based ecophysiological models are powerful tools for predicting how plant performance
(the phenotype) vary in response to genetic makeup of the plants (G), the biophysical environment
(E) they grow in, and how the plants are managed (M). Cooper et al. (2002) described this prediction
problem as the genotype to phenotype or GP problem, but it is more accurately termed the
GEM-to-P problem, recognizing the contributions of environment and management. While we are
far from solving the GEM-to-P problem, ecophysiological models are widely used both as research
and decision support tools.

Uncertainty erodes confidence in crop simulations but can be decreased by accurately specifying
inputs and improving how individual processes are represented. Genetics and genomics offer
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avenues to benefit both aspects of modeling (White and Hoogenboom, 2003). The simplest and
most immediately practicable opportunities relate to improved estimation of model parameters used
to represent cultivar differences, such as for photoperiod sensitivity or grain size. These parameters
are often problematic because their values are determined empirically from field studies and
because the assumed underlying physiology is inaccurate. Further opportunities reside in using
information from genomics and related fields to improve representations of specific physiological

processes.
This paper reviews use of genetics and genomics to improve models with emphasis on experiences

from bread wheat (Triticum aestivum), sorghum (Sorghum vulgare), and common bean (Phaseolus

vulgaris). Table 1 describes six levels of genetic detail that models may implement, ranging from
non-species specific, generic models to models that seek to describe processes by scaling up from
gene-sequences or gene products and eventually, to major physiological processes or even an entire
plant. These six levels provide a useful framework for our discussion. Current widely-used models
such as the Cropping Systems Model (Jones et al., 2003), which is distributed with the Decision
Support System for Agrotechnology Transfer for (DSSAT) software (Hoogenboom et al., 2004),
and APSIM (McCowan et al., 1996) are at level 3 (Table 1), where genetic differences are specified
through empirically adjusted coefficients affecting traits like photoperiod sensitivity, leaf
appearance rate, and characteristic leaf or grain sizes. Emphasis is given here to improvements in
modeling per se. The ultimate goal, of course, is to benefit applications ranging from ideotype
specification to cultivar adaptation to climate change (Hoogenboom et al., 2004).

Table 1 Six levels of genetic detail in crop simulations models (after White and 1-loogenboom, 2003)

1.Generic: no consideration of difference among species
2. Species-specific: species described but no cultivar differences recognized

3. Cultivar specific parameters used to describe cultivar differences

4. Cultivar differences represented by genotypes with linear model parameters

5. Cultivar differences expressed through processes described using knowledge of gene expression and gene
products

6. Full representation of gene regulators, gene-products, etc. in networks

2 Gene-Based Estimation of Model Parameters

The most immediately practicable approach for employing genetic information is to estimate cultivar
parameters as a function of the alleles present at known loci, corresponding to level 4 in Table 1.
An essential first step is to assemble field data for a large set of germplasm known to vary for loci
of interest. This can be problematic since breeding nurseries typically deal with materials of similar
adaptation and may show limited variation. In the case of sorghum, near-isogenic lines for maturity
loci had been tested in a wide range of environments, providing a valuable data resource for model
development (White et al., 2007b). The field data are then used to calibrate the cultivar coefficients
using the conventional approach of adjustment and comparison of measured vs. simulated data on
phenotypes. With the coefficient values in hand, one can then proceed to estimate the effects of

known loci.
In the simplest case, where only dominant and recessive alleles are known and cultivars are pure,

inbred lines, the alleles can be scored with a value of I if dominant and 0 if recessive, and their
effects estimated through linear regression. Thus, for two alleles affecting a cultivar parameter P,

one might have:
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P = a+ bJL 1 + cL2

where a, b and c are regression coefficients (estimated through ordinary least squares), and L 1 and
L2 are scores for two loci. Interactions among loci (genetic epistasis) are incorporated by multiplying
loci effects (e.g., L 1 >< L2), as done for the Ppd and Hr loci affecting photoperiod sensitivity in
common bean (White and Hoogenboom, 1996). Applied to wheat, the estimating equation for the
effect of the Ppd-D1 locus on the photoperiod sensitivity coefficient P I D thus was:

P1D = 39.9- 13.9 Ppd-Dl	 R2 = 0.42**

where Ppd-D1 indicated the effect of the corresponding locus. Note that dominance (Ppd-D1 = 1)
reduces the value of P1 D, reducing photoperiod sensitivity, which agrees with the described effect
of the locus.

Selection of alleles used to estimate a parameter should emphasize physiological rationales. For
example, based on our knowledge of action of the Rht loci in wheat, one might expect them to
influence leaf size but not photoperiod sensitivity. Tests for significance of coefficients can be used
to reject loci whose effects are too small or uncertain to merit inclusion in a given regression, but
physiological understanding (or at least firm hypotheses) should lead variable (locus) selection.

Estimation through linear regression has been used successfully for common bean, soybean
(Glycine max), sorghum and wheat (White and Hoogenboom, 1996; Hoogenboom et al., 1997;
Stewart et al., 2003; Messina et al., 2006; White et al., 2007b; White et al., 2008). Fig. I shows
simulations of days to flowering using gene-based approaches for sorghum and wheat, using
independent evaluation datasets. For both crops, simulations of flowering dates were similar to
those obtained with conventional cultivar coefficients (White et al,, 2007b and 2008).

Table 2 Comparisons of results for conventional and gene-based simulation models of time to flower for
sorghum (White et al., 2007b), and wheat (White et al., 2008). Evaluation datasets are independent from
calibration sets, predominantly involving different locations. The variation that was explained by assuming no
differences among cultivars was tested by evaluating simulations based on a single generic eultivar

Crop	 Dataset	 N
Sorghum Calibration	 108

Evaluation	 74

Wheat	 Calibration	 540

Evaluation
	

1499

** Significant at the P < 0.01 level.

Model type
Generic
Conventional
Gene-based
Generic
Conventional

Gene-based

Generic
Conventional
Gene-based
Generic
Conventional
Gene-based

Mean	 Slop
	

RMSE
64
	

0.23**
	

0.76
	

12.5
67
	 0.61**	 0.76
	

8.8
67
	 Q55**	 0.73
	

9.5
58
	

0.31 **
	

1.41
	

8.8
61
	 0.60**	 0.91
	

6.7
61
	 0.61**	 0.97
	

6.6

208
	

0.95**
	

0.95
	

9.7
209
	 0.98**	 0.95
	

6.6
208
	 0.96**	 0.92
	

8.6
214
	 0.89**	 1.02
	

10.4
213
	 0.92**	 1.00
	

9.0
214
	 0.90**	 0.99
	

9.9

Table 2 summarizes results of simulations of time to flowering in sorghum and wheat using
conventional and gene-based modeling. In testing effects of genotypes, the effect of a "generic"
cultivar was included in order to provide a more meaningful basis for comparison. For each species,
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parameter values for the generic cultivar were estimated as the mean values for all cultivars being
examined (the modal value could also be used). For sorghum, the generic cultivar performed poorly
compared to the conventional and gene-based models, but in wheat, the generic cultivar was
surprisingly effective (Table 2). One interpretation of these results is that for the wheat dataset,
there were very large differences among environments that a generic cultivar was capable of
representing, whereas in sorghum cultivar differences were large relative to environmental differences.
Regression analysis and related techniques provide valuable tool for exploring the relative ability of
models to explain genotype, environment and management effects (White et al., 2007a).
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Figure 1 Comparison of observed vs simulated days to flowering using gene-based model parameters. Both
datasets were independent of calibration data. (a) For sorghum recombinant inbred lines varying for Ma loci
(White et aL, 2007b). (b) For 30 wheat cultivars of the IWWPN (White et al., 2008)

In GeneGro, the common bean model that first used gene-based estimation, genotypes were input
directly into the model, and gene effects were specified as part of the model code. Subsequently,
we realized that since the gene effects were only used to specify model parameters, the calculations
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should be external to the model code: the gene-based estimates of cultivar parameters can simply
replace the conventionally estimated parameters. Thus for wheat and sorghum, we estimated
gene-effects externally and inputted the values to the model through alternate files containing
gene-based estimates of the cultivar parameters. Additional minor innovations in the basic
approach have included consolidating effects of three loci with similar effects (Vrn-AI, Vrn-BI,

and Vrn-Dl in wheat) through a single variable for number of dominant alleles present (White et al.,
2008) and accounting for the three alleles of the sorghum Ma3 locus by scoring values of 1.0, 0.5
and 0 based on estimates of the relative effect of each allele (White et al., 2007b).

The main constraints to gene-based estimation of cultivar parameters probably are that many
modelers are not familiar enough with crop genetics to implement the approaches, that very few loci
are sufficiently characterized to permit efficient modeling, and that even if loci are well characterized
in terms of their effects and underlying physiology, few cultivars have been gcnotyped for loci of
interest. Reducing the first constraint requires effort from the modeling community. The latter two
constraints are diminishing rapidly as genomic tools facilitate characterization of cultivars for loci
such as the Vrn and Ppd series in wheat as well as accelerate identification of new loci. Illustrating
this progress, CIMMYT is now capable of genotyping wheat lines for photoperiod sensitivity
(Ppd-Bl, Ppd-DI), vernalization (Vrn-A1, Vrn-B1, Vrn-Dl) and plant height (Rht-BI, Rht-Dl), at a
cost per locus of $2.00 US (S. Dreisigacker, 2008, personal communication).

In this transition period when characterization of loci affecting physiological traits limits progress
in modeling, a complementary strategy is to use molecular markers to identify quantitative trait loci
(QTL), and then use loci effects to estimate model parameters. In GeneGro (White and Hoogenboom,
1996), this approach was implicitly used since the three hypothetical loci for seed mass were
inferred mainly from QTL studies. QTL-based estimation has been used in simulating barley
growth and yield (Hordeum vulgare; Yin et al., 2000), sorghum phenology (Chantereau et al., 2001)
and leaf growth in maize (Reymond et al., 2003). Traditional QTL studies based on populations of
inbred lines have numerous limitations, but these problems are being overcome through approaches
combining high throughput marker systems such as Diversity Array Technology (Wenzl et al., 2004)
with association mapping (Janink and Walsh, 2002; Crossa et al., 2007).

3 Improved Physiology

In a sense, simple linear models of gene action imply partial knowledge of the underlying physiology.
Specifying that the bean Ppd locus only affected photoperiod parameters implicitly assumed that
the photoperiod response is independent of traits related to growth such as intrinsic leaf size or
potential leaf photosynthetic rate. However, such trivial examples represent minimal advances in
our understanding of physiology. Better integration of plant science and ecophysiological modeling
is still needed (Hammer et al., 2004; Yin et al., 2004; White, 2006) in order to move to level 5 of
Table I. Four cases are explored illustrating the potential benefits to modeling.

Onset of flowering in many plant species depends on activation of the meristem identity gene
APETAIA1 (API), which initiates the conversion of the shoot apex to a reproductive state (Murai
et al., 2003; Imaizumi and Kay, 2006). The photoperiod system inhibits API, but to model the
photoperiod effect, one needs to specify time of onset and end of photoperiod sensitivity. The onset
of sensitivity is considered to represent the end of the juvenile phase and usually is determined with
experiment manipulations. Plants of a sensitive genotype are grown under both short and long day
regimes, and individual plants are transferred from one regime to the other every few days. Analysis
of days to flowering (or other stages) should reveal a date prior to which the plants can be grown in
either photoperiod with no effect on development, indicating that this date corresponds to the end
of the juvenile phase (e.g., Alagarswamy et al., 1998). Besides being labor intensive and requiring
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large numbers of plants, the experiments may not reveal a clear transition (see Figs. 2 and 3 (in
Alagarswamy et al., 1998)). Genomic tools should allow tracking the activity of the photoperiod
system as manifested in levels of specific gene-products and ultimately provide reliable criteria for
measuring the end of the juvenile phase, as well as the end of photoperiod sensitivity much later in
development.

Warmer temperatures increase photoperiod sensitivity in many crops, and there are genetic
differences among cultivars for this effect (e.g., Quinby et al., 1973; Cao and Moss, 1989; White et
al., 1996). Presumably due to uncertainty over its physiological description, however, few models
consider this interaction, Genomics offers the possibility of clarifying the underlying response
mechanisms. Simply improving characterization of genotypes would facilitate testing alternative
approaches to model the interaction, but genomics might determine whether the response involves
a specific, independent temperature sensor or simply results from generic effects of temperature on
metabolic rates.

Modeling effects of tillers is also problematic. Many models work well for high population densities
and narrow row spacings, but they underestimate the growth and yield of tillers when interplant
competition is low. The Tin locus inhibits tillering in wheat (Richards, 1988) and provides one
entry point for molecular-level dissection of tillering. Tiller production involves phytochrome B as
part of the shade avoidance syndrome, and advances in understanding of this system (Franklin and
Whitelam, 2005) are another source of information for modeling tiller development.

A fourth example involves estimating the carbon costs of novel traits. Changes in plant
composition are actively sought as a means to improve the digestibility of cereal straw for cellulosic
ethanol production (Sarath et al., 2008). Lignins, as complex polymers of phenolic compounds, are
not fermentable, and breeding seeks to manipulate their levels by means such as the brown midrib
mutants of maize and sorghum (Sarath et al., 2008). In cereals, lignins typically represent 15 to
20% of stem dry weight, so reducing their levels should reduce the net growth respiration. The
pioneering work of F. Penning de Vries suggested that the cost of biosynthesis of lignins is
approximately 2.2 g glucose per I g lignin vs. 1.2 g g 1 for cellulose (Penning de Vries et al., 1983).
These values allow a rough estimation of the impact of reduced lignin concentration on growth
respiration, but more precise estimates would require a detailed understanding of the metabolic
pathways affected—information obtainable through genomics and metabalomics. Of course, the
metabolic benefit of lowering lignin concentration should be considered in the light of possible
adverse effects such as reduced stem strength. Note that consideration of costs of biosynthesis
should have broad applications in assessing possible trade-offs for crop improvement efforts that
seek to radically alter plant structure or composition, regardless of whether the changes are through
application of molecular or conventional breeding.

4 Plant Systems Biology

The sixth and highest level of complexity in modeling approaches is to explicitly represent biochemical
networks of genes and gene products to achieve what is sometimes termed the "in silico plant"
(Minorsky, 2003). Various software systems can simulate complex metabolic pathways (e.g.,
Hoops et al., 2006; Takahashi et al., 2004), and the Systems Biology Markup Language (SBML)
was established to facilitate this research (Flu et al., 2005). Welch et al. (2003 and 2005) have
probably advanced the furthest in applications that are relevant to crop modeling through their
efforts to model control of flowering in Arabidopsis with simplified networks, although other
flowering models also consider biochemical pathways (e.g., Locke et al., 2005).
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5 How Well Can We Solve the GEM-to-P Problem?

While the arguments outlined above support optimism for improved ability to predict phenotypes
from genotypes, environment and management, there is value in considering the potential limits to
model prediction, especially using genetic data as inputs. For a given quantitative trait, one might
ask what percent of variation can ultimately be explained by models that integrate the best available
knowledge about genetics, physiology and the environment (Fig. 2). Certainly there has been
progress since Reaumur (1735) first proposed concepts that provided the foundation of quantitative
modeling of plant development, but if we look to 2050 or beyond, how much further improvement
can we expect?
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Figure 2 Hypothetical plot of progress in simulation of an arbitrary trait (e.g., flowering date). Note
interrupted axis between 1700 and 1970. The three points correspond to the following events: A. First
conceptualization of accumulated temperature affecting phenology by Reaurnur (1735). B. Expansion of simple
developmental models to consider photoperiod. C. First attempts to introduce genetic information into models

When the Arabidopsis genome was sequenced in 2000 (The Arabidopsis Genome Initiative, 2000),
the genome was estimated to contain 25,000 genes. Subsequent progress in genomics suggests that
the notion of "gene" is more complex than expected. MicroRNAs have proven to have important
signaling roles, complicating the "one gene, one enzyme" paradigm (Axtell et al., 2007). Similarly,
alternate splicing patterns of pre-messenger RNA mean that a single gene sequence can result in
multiple transcripts and hence, multiple proteins (Reddy, 2007). And demonstration of important
epigenetic effects imply that gene sequences are sometimes less important in regulating
transcription than how DNA is physically packaged (Bender, 2002).

Taking 25,000 genes as a lower estimate of the potential complexity of a single species, one
might argue that the prospects for major improvements in predictive ability are poor. However,
counter-arguments in favor of additional simplifications exist. Many gene-systems may primarily
affect disease or pest resistance and have minimal direct relevance to processes considered in
ecophysiological models. Additionally, the genetic systems for pollination, fertilization and early
embryo development may have limited relevance except as they relate to specific stress responses.
In many cases, signaling systems, such as from roots to shoots, may not require complete description:
it should suffice to know that a sensor exists and that a message is transmitted to a receptor. The
simplified gene network model of Welch et al. (2005) for phenology exemplifies this "middle way."
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The possible limits of crop modeling to solve the GEM-to-P problem also relates to the broader

issue of whether evolution is driven by slow accumulation of micro-adaptations, which would favor

arguments for genetic complexity, or whether most mutations are essentially neutral, and only

occasionally do mutations cause major, step-like changes in phenotypes. The first hypothesis implies

that we must ultimately model massively complex regulatory networks, while the latter favors a

view that major simplifications are possible. The increasing availability of genome sequence data

allows more rigorous testing of the nature of evolution (e.g., Drosophila 12 Genomes Consortium,

2007), including for crop domestication (Wright et al., 2005). To date, the evidence mainly suggests

that the genomic rate of adaptive evolution differs greatly among species (Eyre-Walker, 2006).

Prospects for bringing genetics and genomics to ecophysiological modeling, and solving the

GEM-to-P problem, appear excellent. However, the required research is surrounded with uncertainty

that may ultimately require solving fundamental issues of plant evolution and function. Furthermore,

realizing this potential will not happen spontaneously. Modelers must broaden their understanding

of genomics and related fields, while developing effective collaborations with the plant biology

community.
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